














8

rsos.royalsocietypublishing.org
R.Soc.opensci.3:160206

................................................
0.080

PR2 (92 mm S.L.) PR3 (97 mm S.L.)

PR4 (111 mm S.L.) PR5a (127 mm S.L.)

PR6 (267 mm S.L.) PR7 (197 mm S.L.)

0.064

0.048

0.032
0.016

0

0.080

M
n

:C
a

×
10

00 0.064

0.048

0.032
0.016

0

0.020

0.016
0.012

0.008
0.004

0

0.030

0.024

0.018

0.012
0.006

0

0.030

0.024

0.018

0.012
0.006

0

0 200 400 600 800 1000

0 280 560 840 1120 1400 0 280 560 840 1120 1400

0 320 640 960 1280 1600

0 320 640 960 1280 1600
distance from otolith core (mm)

0 360 720 1080 1440 1800

0.0180

0.0144

0.0108

0.0072
0.0036

0

Figure 3. Plots show the variation in Mn : Ca over the lifetime of Ecuadorian-caught Prochilodus nigricans measured along a transect
from the core of the otolith to its outer edge. Arrowsmark the location of growthmarks on the otolith. Note that we did not identify these
marks as annuli. Different axes are used for each fish to emphasize the patterns of the data.
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Figure 4. Plots show the variation in Ba : Ca over the lifetime of Ecuadorian-caught Prochilodus nigricansmeasured along a transect from
the core of the otolith to its outer edge. Arrows mark the location of growth marks on the otolith. Note that we did not identify these
marks as annuli. Different axes are used for each fish to emphasize the patterns of the data.
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Figure 5. Otolith from Colombian-caught Brachyplatystoma rousseauxii. (a) Optical image (reflected light). (b) Sr : Ca map. (c) Se : Ca
map. The red transect marks putative biannuli.

3.3. Long-distance migrants
We estimated the ages of the Colombian B. rousseauxii and B. filamentosum to be 3.5 and 4 years,
respectively, and the Ecuadorian B. rousseauxii at 3 years following Alonso & Fabré [67]. SXFM revealed
alternating bands of Se and Sr in B. rousseauxii and B. filamentosum that were delineated by biannual
growth checks (figures 5 and 6). Marked Se deposition co-occurred with rapid growth in the early
life of both Brachyplatystoma species, and repeated annually in B. filamentosum (figures 5 and 6). LA–
ICPMS measurements in both B. rousseauxii otoliths showed a decoupling of Sr : Ca and Ba : Ca beginning
500–1000 µm away from the core, in which Sr : Ca rose and plateaued (with annual variation), while
Ba : Ca declined and plateaued (figure 7). Around 3000 µm from the core, Sr : Ca declined and Ba : Ca
rose. In B. filamentosum, Sr : Ca and Ba : Ca rose and declined simultaneously (figure 7). Sr : Ca in
both B. rousseauxii specimens indicated two distinct life-history phases: one marked by high, variable
Sr : Ca during the first 1.5–2 years of life followed by a phase marked by lower, less variable Sr : Ca
(figures 5 and 7).

4. Discussion
This study offers new insights into South American fish life history and contributes to the growing field
of Amazonian fish otolith microchemistry. Using LA–ICPMS and SXFM in combination provided the
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Figure 6. Otolith from Colombian-caught Brachyplatystoma filamentosum. (a) Optical image (reflected light). (b) Sr : Ca map. (c) Se : Ca
map. The red transect marks putative biannuli.

flexibility to sample many elements simultaneously, which is particularly important in poorly studied
systems where it is largely unknown which elements may be useful environmental markers and which
may not. This study was not only simple and cost-effective, but also demonstrated how powerful
these analytical techniques can be for studying imperilled systems. With a limited sample size, we
identified potential new markers for critical habitats and elucidated the life-history complexity of several
fish species, while avoiding the issues associated with tagging–tracking methods often used in life-
history studies. This study lays the groundwork for a potentially very productive line of research that
could do much to provide the necessary biological and ecological basis for conserving these important
commercial fishes.

Our results for Arapaima sp. were consistent with previous findings that this fish does not migrate
among chemically distinct environments. Castello [39] demonstrated that Arapaima in the central
Amazon appear to migrate short distances among eight different habitats over the course of a flood cycle
as water levels regulate habitat availability. However, these habitats are in relatively close proximity
with one another and are expected to have roughly the same chemistry. The Sr : Ca observed in the
present study (figure 1) oscillated minimally on an annual basis, which would easily be explained
by the seasonal introduction of flood waters into the lake from which this fish was captured. The
detected Zn (figure 1), which was unique among the fishes in this study, also fits the known ecology
of Arapaima, outlined above. Zn has been shown to vary inversely with oxygen concentration and
pH in the Orinoco River system [83]. The conditions associated with elevated Zn concentrations are
common in environments like the lakes that Arapaima inhabit. The lifetime Zn : Ca patterns observed
in this fish were similar to those of Sr : Ca, displaying small oscillations that could also be explained
by annual inundations of the local environment. However, it is also possible that Zn : Ca is under
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Figure 7. Plots show the variation in Sr : Ca (dashed line) and Ba : Ca (solid line) over the lifetime of two B. rousseauxii and one
B. filamentosum,measured along a transect from the core of the otolith to its outer edge. Different axes are used for eachfish to emphasize
the patterns of the data. In each graph, the elemental ratio transects were smoothed with 5-point moving averages.

physiological control. Limburg & Elfman [84] found that Zn : Ca in the otoliths of salmoniform and
esociform fishes varied seasonally and correlated positively with growth rate, suggesting an underlying
physiological mechanism. Additional studies are required to elucidate this in Arapaima. Regardless,
the otolith microchemistry of this individual appears to be consistent with what one would expect
from a typical sedentary fish that undertakes only short-distance lateral migrations among chemically
similar environments.

The distinct chemical ‘zones’ of high/low Sr : Ca and high/low Mn : Ca (figure 2) found in the
Plagioscion otolith suggest that this individual spent multiple growing seasons in several chemically
distinct environments. This fish was caught in the lower reaches of the blackwater Cuyabeno drainage
near its confluence with the whitewater Rio Aguarico, both of which are surrounded by many floodplain
lakes. Therefore, it seems reasonable to conclude that these environments may have been among those
used by this fish. Potential migration among such diverse environments contrasts with the behaviour
of Arapaima sp., whose otolith microchemistry was best explained by short-distance migrations among
chemically similar environments. These results suggest that Plagioscion may have a more complex
life history than previously thought and, furthermore, may be behaviourally distinct from traditional
sedentary fishes (e.g. Arapaima). Further studies with more extensive sampling will be necessary to better
clarify these life-history details and determine how common these hypothesized behaviours may be
within this widespread species.

Mn : Ca was also shown to be potentially useful as a marker for black water, which is a critical
environment in the life histories of Plagioscion and Prochilodus. The Mn : Ca values of the thick Mn : Ca
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bands found in the Plagioscion otolith exceeded the hypoxia threshold of 2.2 × 10−5 used in this study [22],
indicating a water chemistry consistent with preferred spawning conditions (i.e. low dissolved oxygen)
identified by Baumgartner et al. [42] and Bialetzki et al. [43]. The age-0 Prochilodus used in this study
were probably born in April 1999 during the spawning season and caught for use by Silva & Stewart
[48] in September 1999 shortly after having migrated upstream. The otolith growth checks preceding
elevated Mn : Ca may mark this migration into black water, where these fishes were caught. Therefore,
given that Prochilodus spawns in white water, and we found no Mn in strictly whitewater fishes (i.e. both
Brachyplatystoma species), we hypothesize that the first Mn : Ca peak observed in Prochilodus marks the
first migration from downstream whitewater nursery habitats to the upstream blackwater rivers.

Sr : Ca and Ba : Ca data suggest that the B. rousseauxii individuals used in this study lived their first
1.5–2 years in the Amazon estuary. Using only Sr : Ca, two life-history stages are clearly visible (i.e.
the first 1.5–2 years and then thereafter) in B. rousseauxii (figures 5b and 7). Sr : Ca in otoliths has been
demonstrated to increase proportionally with salinity, reflecting the higher concentrations of Sr relative
to Ca found in marine waters [80,85,86], and has been used in many studies as a marker in anadromous
fishes to indicate a shift between freshwater and marine environments [87,88], including in other tropical
species [89,90]. Furthermore, the Sr concentration found in the Amazonian endmember and its tributaries
has been shown to be an order of magnitude lower than that found in marine waters [91,92]. The
variation in Sr : Ca that we observed is comparable with the differences seen in studies of diadromous
fishes that migrate between freshwater and marine environments (e.g. [82,85,88,93,94]). The observed
Ba : Ca patterns were also consistent with the migration of a fish from freshwater into an estuary.
Elsdon & Gillanders [81] found that otoliths from black bream Acanthopagrus butcheri migrating between
freshwater rivers and saltwater estuaries had roughly double the otolith Ba : Ca while in freshwater
versus while in the estuary, which reflected ambient water chemistry. Recent studies have also shown
that Sr and Ba can be used in conjunction to demonstrate the transition between freshwater rivers and
estuaries [82,95,96]. For example, the mirrored behaviours of otolith Ba : Ca and Sr : Ca in B. rousseauxii
(figures 5 and 7) were nearly identical to those observed in European eels [82] and barramundi Lates
calcarifer [95,96] migrating from freshwater into an estuary. Prior studies using this technique have
identified estuary use by fish species with distinctly marine life-history stages, such as hilsa Tenualosa
ilisha (e.g. [89]) and barramundi (e.g. [96]). However, Brachyplatystoma species are thought to remain
in freshwater parts of the estuary [27]. If verified by additional studies, these results would mark the
first time that this technique has been used to identify estuary use in a tropical migratory fish that lacks a
defined marine life-history stage. Therefore, this technique would stand as a powerful tool for identifying
residence in this critically important environment.

While the B. rousseauxii results were consistent with those of fishes migrating into an estuary from
a river, our data suggested that B. filamentosum did not migrate passively or actively into the estuary.
Rather, Sr : Ca and Ba : Ca for B. filamentosum rose and declined simultaneously (figure 7). These results
are consistent with those of Hegg et al. [17], suggesting that some Brachyplatystoma species use the
estuary as a nursery area, while others may never reach the estuary and therefore have different
life-history strategies.

Our data also indicate that Se may be a useful marker for identifying migration into or out of
Andean headwaters. There are few published studies on Se in otoliths and most use it to identify
severely polluted environments (e.g. [13,97,98]). However, Yee et al. [99] measured Se concentrations
in tributaries of the Orinoco Basin, finding that concentrations were highest in tributaries originating
in the Andes Mountains (white water), low in the main channel and very low in other tributaries such
as those draining the Guyana shield. Because the whitewater tributaries of the Amazon also originate
in the Andes, the Amazon and Orinoco Basins probably have a similar pattern of Se concentrations
among tributaries. Se : Ca in the B. rousseauxii from Colombia was high during roughly the first few
months of life, but zero during its assumed residence in the estuary, up until when it was caught in the
Rio Caqueta (an Andean tributary), where we found Se : Ca again at the otolith margin (figure 6). The
repeated and alternating banding of high Sr : Ca/Ba : Ca and Se : Ca therefore suggest that the Colombian
B. filamentosum in this study may have migrated into and out of the same or similar headwater tributaries
annually during its lifetime (figures 6 and 7), but did not establish residence in those headwater areas.

We hypothesize that the very high Ba : Ca peaks present in two Prochilodus specimens were the result
of environmental contamination. These values were an order of magnitude higher than those observed
anywhere else in the otolith (figure 4) and were the highest concentrations ever observed by one of us
(K.E.L.). Both left and right otoliths were analysed on one individual to verify this result. Given that these
fish were caught in the Ecuadorian Amazon just downstream from the Lago Agrio oil field, pollution
seems a possible cause. Ecuador has a history of poor oil field management since oil exploitation began
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in 1972, leading to environmental and public health concerns such as increased cancer risk and birth
defects among people living nearby [62,100–104]. Measured Ba concentrations from drilling wells at
Lago Agrio were as high as 10 100 mg kg−1 due to barite contamination; even so-called remediated wells
had concentrations over 1000 mg kg−1 [105]. Barite (BaSO4) is a common additive to ‘drilling mud’,
the lubricant used in oil drilling processes [106], and is known to be bioavailable in marine systems,
particularly to detritivores [107]. Although largely insoluble near neutral pH, barite acts as a source
of reducible sulfate for sulfate-reducing bacteria [108,109], a process that releases Ba into pore waters
[110]. Neff [107] also suggested that a fish’s stomach may provide a sufficiently acidic environment for
dissolution. Further study of the fishes in this region is needed to better describe this phenomenon.

5. Conclusion
The data and inferences on the life histories of five Neotropical freshwater fishes reported here provide
a foundation upon which to develop testable hypotheses, thereby setting priorities and directions for
future studies. Extensive water sampling, both spatially and temporally, will be critical to accurately
verify and recreate the migratory strategies hypothesized herein. Ideal future studies should include
water sampling at a scale relevant to the species in question (i.e. basin-wide for Brachyplatystoma, or
regionally for Prochilodus). Furthermore, a comparative, basin-wide approach to fish sampling should be
taken to elucidate differences among distinct populations (e.g. Ecuadorian versus central Amazonian
Prochilodus) and/or species (e.g. Brachyplatystoma species). Finally, the mechanisms by which newly
identified chemical markers were incorporated into otoliths need to be better understood via laboratory
experiments and comparison of Amazonian water chemistry to otolith chemistry from fishes caught in
those same waters. As demonstrated by this study, a combination of LA–ICPMS and SXFM can facilitate
unravelling the complex life histories of these fishes. Subsequent larger studies should provide the
migration and habitat use data that are fundamental to developing sound management and conservation
strategies for these species. There is also considerable potential for applications of these methods to fishes
in other large, tropical rivers of the world that have similar emerging threats [111].
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